Quantum Computing and Cryptography

DEFCON 9.0 July 2001 David Gessel

- 2.0 Classical computing, basic definition
- 3.0 Basic principles of Quantum Mechanics
- 4.0 Basic principles of Quantum Computing
- 5.0 Applications: Cryptography, Cryptoanlysis
- 6.0 Practical Implementations
- 7.0 Conclusion

- 2.1 Turing Machines
- 2.2 Dimensions: Clock, Complexity, Parallel
- 2.3 P, nP, Hard Problems, and Intractability

2.1 Turing Machines

Reads one bit at a time from the tape, depending on the internal state, writes a new bit on the tape
Church's Thesis: Any computable function can be computed on

a Turing machine. (Approx 1930)

2.2 Complexity of Classical Systems

The complexity of classical systems is increasing exponentially such that $P = 2^{(t/1.5)}$

Multiplication is polynomial (P) Factorization is exponential (nP)*

*(not proven)

- 3.1 Uncertainty and Heizenberg
- 3.2 Spin, Polarization
- 3.3 Two Slit Experiment
- 3.4 Quantum Interference
- 3.5 Spooky Action at a Distance

$\Delta p \Delta x \geq h$

p = momentum x = position Planck's constant, $h = 6 \times 10^{-27}$ gm cm 2 /sec

An Introduction to Quantum Computing and Cryptography

Interference is observed even one photon at a time.

Detector 2 sees no Photons, defying classical expectations

Blocking one path restores 50/50 detection, even a photon at a time.

Particles are entangled until measurement. Measuring one defines the spin of the other, no matter how far apart.

(Einstein, Podolsky, and Rosen - 1935)

- 4.1 What is a Quantum Computer
- 4.2 Qubits
- 4.3 Entangled Registers
- 4.4 CNOT Gate

Feynman, 1982: proposed a computer based on quantum interactions. Deutsch, 1985: showed that Feynman's computer can, in principle, model any physical process exactly.

A qubit is a particle set into a superposition of states, both 1 and 0.

Each entangled state pair represents a dimension for the system of qubits

$$P = 2^n$$

P = power
n = number of qubits

3 qubits =
$$2^3$$
 $a_1 | 000 >$
 $a_2 | 001 >$
 $a_3 | 010 >$
 $a_4 | 011 >$
 $a_5 | 100 >$
 $a_6 | 101 >$
 $a_7 | 110 >$
 $a_8 | 111 >$

- 5.1 Factorization
- 5.2 Sieve Function
- 5.3 Key Distribution

 $F_N(x) = a^x \mod N$ - Yields data in period r. The factors of N are greatest common divisor of N and $a^{r/2}\pm 1$.

An Introduction to Quantum Computing and Cryptography

Classical Search of N items takes N/2 steps Quantum search - by applying search tests to all values in the register simultaneously - takes on average $\sqrt{N/2}$ steps.

Application is finding, for example DES keys by brute force by searching the key space. Classical DES crack, 1000 years E6 keys/sec Grover's algorithm would take 4 minutes

Alice Sends With	+	х	+	+	x	х	+	+	x	x	+	+	х
Alice Sends to Bob		/		-	/	\		-	\	\	-		/
Bob measures with	+	х	х	+	+	х	+	x	x	+	x	+	х
Bob's Results:		/	/	-	1	\		\	\	-	\	1	/
Valid Data		/		-		\			\				/
Translated to Key	1	0		0		1	1		1			1	0

Ion Trap Computer

NMR Computer

Classical: $P = 2^{(y/1.5)}$ Quantum: $P = 2^{2^{(y/2)}}$